Concavity and the Second Derivative Test

The graph of a differentiable function y = f(x) is:

- a) Concave up on an open interval I if y' is increasing on I.
- b) Concave down on an open interval I if y' is decreasing on I.
- -If a function has a second derivative, then we can conclude that y' increases if y'' > 0 and y' decreases if y'' < 0.

Concavity Test

- -The graph of a twice differentiable function y = f(x) is
 - a) Concave up on any interval where y'' > 0
 - b) Concave down on any interval where y'' < 0

Example

-Find the concavity of $y = 3 + \sin(x)$ on $[0, 2\pi]$

$$f'(x) = \cos(x)$$

$$f''(x) = -\sin(x)$$

- -Concave down on $(0,\pi)$ where $-\sin(x)$ is negative.
- -Concave up on $(\pi,2\pi)$ where $-\sin(x)$ is positive.

Points of Inflection

- -The curve $y = 3 + \sin(x)$ changes concavity at the point $(\pi, 3)$.
- -We call $(\pi,3)$ a point of inflection.
- -A point where the graph of a function has a tangent line and where the concavity changes is a **point of inflection**.
- -At such a point y'' = 0 or is undefined.
- -If y'' = 0 at a point of inflection then y' has a local min or max.

Example-Motion Along a Line

$$s(t) = 2t^3 - 14t^2 + 22t - 5 \qquad t \ge 0$$

-Find the velocity, acceleration, and describe the motion of the particle.

$$v(t) = s'(t) = 6t^2 - 28t + 22 = 2(t-1)(3t-11)$$

$$a(t) = v'(t) = s''(t) = 12t - 28 = 4(3t - 7)$$

-When s(t) is increasing the particle is moving right. Left when s(t) is decreasing.

-Notice that the 1st derivative (v = s') is 0 when t = 1 and t = 11/3.

Intervals	0 < t < 1	1 < t < 11/3	11/3 < †
Sign of v	+	-	+
Behavior of s	Increasing	Decreasing	Increasing
Motion	Right	Left	Right

-Moving to the right on $\left[0,1\right)$ and $\left(11/3,\infty\right)$ and moving to the left on $\left(1,11/3\right)$.

$$-a(t) = v'(t) = s''(t) = 12t - 28 = 4(3t - 7)$$
 is zero when $t = 7/3$

Intervals	0 < t < 7/3	7/3 < t
Sign of a	-	+
Graph of s	Concave down	Concave up

-The acceleration force is directed left during $\left[0,7/3\right)$, is momentarily 0 at t=7/3 and directed right afterwards.

Second Derivative Test for LOCAL EXTREMA

- 1) If f'(c) = 0 and f'' < 0, then f has a <u>local maximum</u> at x = c.
- 2) If f'(c) = 0 and f'' > 0, then f has a <u>local minimum</u> at x = c.
- -The test fails if f''(c) = 0 or f''(c) DNE.

-When this happens find local extremas from the first derivative.

Example-Using the 2nd Derivative Test

$$f(x) = x^3 - 12x - 5$$

$$f'(x) = 3x^2 - 12 = 3(x^2 - 4)$$

$$f''(x) = 6$$

-Test critical points $x = \pm 2$ (there are no endpoints)

$$f''(-2) = -12 < 0 \Rightarrow f$$
 has a local max at $x = -2$

$$f''(2) = 12 > 0$$
 \Rightarrow f has a local min at $x = 2$

Example-Using f' and f" to graph f

$$f'(x) = 4x^3 - 12x^2 = 4x^2(x-3)$$

-The first derivative is zero at x = 0 and x = 3

Intervals	<i>x</i> < 0	0 < <i>x</i> < 3	3 < <i>x</i>
Sign of f'	-	-	+
Behavior of f	Decrease	Decrease	Increase

-No extrema at x = 0 and a local min at x = 3.

-f is decreasing on $\left(-\infty,0\right]$ and $\left[0,3\right]$ and increasing in $\left[3,\infty\right)$.

$$-f''(x) = 12x^2 - 24x = 12x(x-2)$$
 is zero at $x = 0$ and $x = 2$

Intervals $x < 0$	0 < x < 2	2 < x
-------------------	-----------	-------

Sign of f"	+	-	+
Behavior or f	Concave up	Concave down	Concave up

-f is concave up on $\left(-\infty,0\right)$ and $\left(2,\infty\right)$ and down on $\left(0,2\right)$

-combining tables we get

<i>x</i> < 0	0 < x < 2	2 < x < 3	x > 3
Decreasing	Decreasing	Decreasing	Increasing
Concave up	Concave down	Concave up	Concave up