Concavity and the Second Derivative Test

The graph of a differentiable function $y=f(x)$ is:
a) Concave up on an open interval I if y^{\prime} is increasing on I.
b) Concave down on an open interval I if y^{\prime} is decreasing on I.
-If a function has a second derivative, then we can conclude that y^{\prime} increases if $y^{\prime \prime}>0$ and y^{\prime} decreases if $y^{\prime \prime}<0$.

Concavity Test

-The graph of a twice differentiable function $y=f(x)$ is
a) Concave up on any interval where $y^{\prime \prime}>0$
b) Concave down on any interval where $y^{\prime \prime}<0$

Example

-Find the concavity of $y=3+\sin (x)$ on $[0,2 \pi]$

$$
\begin{aligned}
& f^{\prime}(x)=\cos (x) \\
& f^{\prime \prime}(x)=-\sin (x)
\end{aligned}
$$

-Concave down on $(0, \pi)$ where $-\sin (x)$ is negative.
-Concave up on $(\pi, 2 \pi)$ where $-\sin (x)$ is positive.

Points of Inflection

-The curve $y=3+\sin (x)$ changes concavity at the point $(\pi, 3)$.
-We call $(\pi, 3)$ a point of inflection.
-A point where the graph of a function has a tangent line and where the concavity changes is a point of inflection.
-At such a point $y^{\prime \prime}=0$ or is undefined.
-If $y^{\prime \prime}=0$ at a point of inflection then y^{\prime} has a local min or max.

Example-Motion Along a Line

$$
s(t)=2 t^{3}-14 t^{2}+22 t-5 \quad t \geq 0
$$

-Find the velocity, acceleration, and describe the motion of the particle.

$$
v(t)=s^{\prime}(t)=6 t^{2}-28 t+22=2(t-1)(3 t-11)
$$

$$
a(t)=v^{\prime}(t)=s^{\prime \prime}(t)=12 t-28=4(3 t-7)
$$

-When $s(t)$ is increasing the particle is moving right. Left when $s(t)$ is decreasing.
-Notice that the $1^{s t}$ derivative $\left(v=s^{\prime}\right)$ is 0 when $t=1$ and $t=11 / 3$.

Intervals	$0<t<1$	$1<t<11 / 3$	$11 / 3<t$
Sign of \mathbf{v}	+	-	+
Behavior of s	Increasing	Decreasing	Increasing
Motion	Right	Left	Right

-Moving to the right on $[0,1)$ and $(11 / 3, \infty)$ and moving to the left on $(1,11 / 3)$.
$-a(t)=v^{\prime}(t)=s^{\prime \prime}(t)=12 t-28=4(3 t-7)$ is zero when $t=7 / 3$

Intervals	$0<t<7 / 3$	$7 / 3<t$
Sign of a	-	+
Graph of s	Concave down	Concave up

-The acceleration force is directed left during $[0,7 / 3)$, is momentarily 0 at $t=7 / 3$ and directed right afterwards.

Second Derivative Test for LOCAL EXTREMA

1) If $f^{\prime}(c)=0$ and $f^{\prime \prime}<0$, then f has a local maximum at $x=c$.
2) If $f^{\prime}(c)=0$ and $f^{\prime \prime}>0$, then f has a local minimum at $x=c$.
-The test fails if $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)$ DNE.
-When this happens find local extremas from the first derivative.

Example-Using the $2^{\text {nd }}$ Derivative Test

$f(x)=x^{3}-12 x-5$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-12=3\left(x^{2}-4\right) \\
& f^{\prime \prime}(x)=6
\end{aligned}
$$

-Test critical points $x= \pm 2$ (there are no endpoints)

$$
\begin{aligned}
& f^{\prime \prime}(-2)=-12<0 \rightarrow f \text { has a local max at } x=-2 \\
& f^{\prime \prime}(2)=12>0 \rightarrow \text { f has a local min at } x=2
\end{aligned}
$$

Example-Using f^{\prime} and $f^{\prime \prime}$ to graph f

$$
f^{\prime}(x)=4 x^{3}-12 x^{2}=4 x^{2}(x-3)
$$

-The first derivative is zero at $x=0$ and $x=3$

Intervals	$x<0$	$0<x<3$	$3<x$
Sign of \mathbf{f}^{\prime}	-	-	+
Behavior of \mathbf{f}	Decrease	Decrease	Increase

-No extrema at $x=0$ and a local min at $x=3$.
-f is decreasing on $(-\infty, 0]$ and $[0,3]$ and increasing in $[3, \infty)$.
$-f^{\prime \prime}(x)=12 x^{2}-24 x=12 x(x-2)$ is zero at $x=0$ and $x=2$
Intervals $x<0 \quad 0<x<2 \quad 2<x$

Sign of $\mathrm{f}^{\prime \prime}$	+	-	+
Behavior or f	Concave up	Concave down	Concave up

-f is concave up on $(-\infty, 0)$ and $(2, \infty)$ and down on $(0,2)$
-combining tables we get

$x<0$	$0<x<2$	$2<x<3$	$x>3$
Decreasing	Decreasing	Decreasing	Increasing
Concave up	Concave down	Concave up	Concave up

